Probability-constrained Approach to Estimation of Random Gaussian Parameters
نویسندگان
چکیده
The problem of estimating a random signal vector x observed through a linear transformation H and corrupted by an additive noise is considered. A linear estimator that minimizes the mean squared error (MSE) with a certain selected probability is derived under the assumption that both the additive noise and random signal vectors are zero mean Gaussian with known covariance matrices. Our approach can be viewed as a robust generalization of the Wiener filter. It simplifies to the recently proposed robust minimax estimator in some special cases.
منابع مشابه
DATA ENVELOPMENT ANALYSIS WITH FUZZY RANDOM INPUTS AND OUTPUTS: A CHANCE-CONSTRAINED PROGRAMMING APPROACH
In this paper, we deal with fuzzy random variables for inputs andoutputs in Data Envelopment Analysis (DEA). These variables are considered as fuzzyrandom flat LR numbers with known distribution. The problem is to find a method forconverting the imprecise chance-constrained DEA model into a crisp one. This can bedone by first, defuzzification of imprecise probability by constructing a suitablem...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملEnergy Storage Planning in Active Distribution Grids: A Chance-Constrained Optimization with Non-Parametric Probability Functions
By considering the specific characteristics of random variables in active distribution grids, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In particular, we develop new closedform stochastic models for the ke...
متن کاملEstimating the Parameters in Photovoltaic Modules: A Constrained Optimization Approach
This paper presents a novel identification technique for estimation of unknown parameters in photovoltaic (PV) systems. A single diode model is considered for the PV system, which consists of five unknown parameters. Using information of standard test condition (STC), three unknown parameters are written as functions of the other two parameters in a reduced model. An objective function and ...
متن کامل